ТЕХНОЛОГИЯ D-MESH ФИРМЫ DJV-COM: СОЕДИНЕНИЕ ВСЕГДА И ВЕЗДЕ (20 ВОПРОСОВ и ОТВЕТОВ)

D-Mesh — это беспроводные многоузловые (mesh) сети с низкой скоростью передачи данных и сверхнизким энергопотреблением для систем сбора данных и передачи команд управления. D-Mesh сети имеют множество практических преимуществ относительно проводных систем: отсутствие необходимости в прокладке кабелей для электропитания и передачи данных; низкая стоимость монтажа, пуска-наладки и технического обслуживания системы; возможность внедрения и модификации сети на эксплуатируемом объекте без вмешательства в процесс функционирования; надежность и отказоустойчивость всей системы в целом при нарушении отдельных соединений между узлами; полная самоорганизация; широкие возможность масштабирования; работа в режиме реального времени, прошедшие проверку временем программное обеспечение и оборудование.

1. Степень готовности. Является ли D-Mesh готовой к использованию на практике технологией?

Да, фирмой DJV-COM уже установлено нескольких тысяч точек учета потребления газа и тепла, состоящих из сетей по 50-270 узлов. Работы по оптимизации цены и функциональности продолжаются.

2. Стоимость. Как определяется полная стоимость сенсорной сети?

Затраты на беспроводную сенсорную сеть складываются из стоимости проектирования, оборудования, пуска-наладки и последующего сопровождения системы. Как правило, стоимость радиомодулей составляет незначительную часть полной стоимости системы. В полную стоимость может входить стоимость управляющего процессора, корпуса, соединителей, батареи, а также репитеров, маршрутизаторов, модулей питания, стоимость предварительного тестирования, изучения зон покрытия, определения мест установки репитеров, маршрутизаторов, что требует как специального оборудования, так и соответствующей квалификации работников.

Если используются маршрутизаторы с постоянным питанием, необходимо учесть затраты на прокладку сети питания и установку в вандалозащищенные корпуса. Наличие оборудования требующего подводки питания, а также крепление корпусов на стенах и опорах значительно увеличивает цену и приближает нас к стоимости установки проводного оборудования.

Например, эксперты компании Tendril приводят следующее типовое распределение затрат: оборудование 10%; базовое ПО 10-15%; монтаж 10-20%; поиск неисправностей и сопровождение 5-10%; системное и прикладное ПО 50-65% (*1,2).

Заплатив за радиомодуль 10-20\$, вам может понадобится выплатить еще 90 – 180\$ на точку учета, чтобы получить данные на своем компьютере.

Цена затрат на точку учета сенсорных сетей D-Mech не зависит от сложности архитектуры сети, числа узлов в сети, частоты изменения структуры сети, а также особенностей пользовательского программного обеспечения. Для развертывания сети не требуется специального образования и подготовки, а также специального оборудования и проектных работ. Стоимость батарей минимальна, а время их службы не менее 6 лет.

3. Время. Какое требуется время для развертывания сенсорной сети?

Беспроводные сенсорные сети позволяют значительно сократить срок монтажа по сравнению с проводными системами сбора данных.

DJV-COM предлагает самоорганизующиеся сети с возможностью горячей замены элементов сети. Для установки одного узла сети требуется от 3 до 4-х минут. Без предварительного планирования, без подготовительных работ, без специального оборудования и специальных знаний. Интегрирование и настройка сети не требуются. Постоянный контроль и сопровождение не требуется. Для работы пользовательских приложений достаточно занести в базу данных соответствие идентификатора радиомодуля физическому адресу установки.

4. Масштабируемость. Как число узлов влияет на стоимость и сложность сенсорной сети?

Масштабируемость является одним из ключевых свойств систем передачи данных. Сенсорные сети имеют плохую репутацию при числе точек более 10-15. В противоположность этому сети DJV-COM работают при числе точек на сети 1000 и более. При этом число коллизий не увеличивается.

Сетевые протоколы D-Mesh построены таким образом, что не допускают разряда батарей при увеличении числа устройств в сети и увеличении объема информации передаваемой через них.

В большинстве систем цена растет линейно, а сложность экспоненциально от числа устройств в сети. Для D-Mesh сетей сложность не возрастает с увеличением числа точек в сети, а цена затрат на одну точку падает, так как стоимость координатора сети распределяется на большее число устройств.

Для D-Mesh сетей решен вопрос надежной работы сетей с перекрывающейся слышимостью, что позволяет установить на одном и том же объекте до 4-х подсетей, что увеличивает возможность масштабируемости сетей D-Mesh.

5. Управление сетью. Какие требования к каждодневному управлению сенсорной сетью?

Программное обеспечение сети D-Mesh обеспечивает диагностику, автоматические отчеты по доставке данных, информацию о состоянии сети и авариях. Сеть не требуют управления, сеть сама конфигурируется при перестановке, добавлению или удалению узла.

6. Проблемы. Кто обычно отвечает за проблемы после установки сенсорной сети D-Mesh?

Доступен удаленный мониторинг. Существует возможность доступа к базе данных по Интернет и анализ логов обмена с координаторами сети. Доступна информация о состоянии сети и состоянии батарей на конечных устройствах. Поставщик оборудования обеспечивает техническую поддержку.

7. Интерфейсы. Каким образом данные представляются конечному пользователю?

Для современного пользователя данные, даже если они аналоговые, должны быть предоставлены на персональном компьютере: например локально через USB интерфейс, удаленно через Интернет или web-страницу или экспорт в EXEL формат в виде таблиц и графиков для данных и аварий. Доступ возможен как к текущим данным, так и к архивным данным за выбранную дату, что позволяет пользователю оптимизировать потребление энергоресурсов.

8. Интеграция. Как интегрировать данные сенсоров с существующими базами данных?

Web – интерфейсы, IP-сети, экспорт в SQL базы данных и открытые интерфейсы обмена данными уже стали стандартами де-факто для сегодняшних бизнес систем, которые подходят как для обмена финансовой информацией, так и информацией от сенсоров.

9. Есть ли разница между временной инсталляцией сети и постоянной?

Никакой разницы нет. Если для пилотного проекта установлено некоторое количество устройств, чтобы убедиться в работоспособности системы, то можно легко установить необходимое число дополнительных устройств. Для демонстрационной версии, если частота активности на сети намного больше рабочей, время жизни батарей может быть меньше.

10. Время окупаемости. Каким образом можно рассчитать время окупаемости сенсорных сетей?

Для каждого применения существуют свои методы расчета: это экономия времени на сбор информации, это достоверность и своевременность получаемой информации, это возможность реагировать на ситуацию в реальном времени, это контроль балансов по заданным объектам в случае потребления энергоресурсов, это своевременная реакция на аварии, что позволяет сохранить дорогостоящее оборудование или предотвратить утечку энергоресурса – газа, воды, тепловой энергии. Это контроль потребителя возможность управления исполнительными механизмами, это прогноз потребления по заданному участку на основе анализа потребления за предыдущий месяц/сезон/год, это контроль утечек газа и воды – безопасность потребителя и экономия ресурсов.

11. Ресурсы. Какой уровень образования нужен для развертывания сенсорной сети?

Для развертывания сенсорной сети D-Mesh не нужно специальное образование. Любой человек сможет установить радиомодули и любой пользователь компьютера - запустить систему. Система работает по принципу «plug&play». Запустить систему не сложнее чем запустить персональный компьютер.

12. Как сенсорная сеть D-Mesh устанавливается и активируется?

Вставьте батареи, подсоедините датчики, установите оборудование, подключите к электросети сети координатор сети, занесите в таблицу соответствие физического адреса (абонента) уникальному идентификационному номеру модуля. Далее элементы самоорганизующейся сети распознают друг друга, построят сеть передачи данных и данные поступят на сервер.

13. Дальность связи.

Нужно помнить, что устройства диапазона 2,4ГГц не будут работать в дождь и не будут работать в металлическом ящике.

Мы предлагаем использовать более низкочастотные диапазоны частот. Они предпочтительнее для использования, потому как менее загружены, и радиоволны этого диапазона меньше поглощаются стенами.

Типовые значения дальности составляют 20-40 м внутри помещений и 200-400 м на открытом пространстве в прямой видимости. Однако способность узлов ретранслировать сообщения друг друга и автоматически искать маршруты передачи пакетов в обход препятствий делает возможным применение сетей D-Mesh в тяжелых условиях эксплуатации. В результате обеспечивается значительная площадь покрытия сети при малой мощности передатчиков и существенной экономии энергии.

Для сетей D-Mesh дистанция ограничена только предельным количеством уровней ретрансляции в сети. Например, если число уровней ограничено 30, то в зданиях можно ожидать покрытия до 300-600 м, а в полевых условиях радиус покрытия сетью может достигать 6-12 км.

14. Батареи. Что нужно знать о мощности потребления и сроке службы батарей?

Срок автономной работы сетевого узла зависит от емкости батареи и среднего тока потребления, который определяется периодом передачи сообщений, качеством связи и количеством ретранслируемых пакетов. Далеко не все представленные на рынке решения для беспроводных сетей позволяют создавать полноценные mesh-сети, в которых все узлы способны выполнять ретрансляцию при работе на автономных элементах питания.

Пользователи должны уточнить у поставщика, если он заявляет многолетний срок службы батареи, например 5-10 лет, для каких условий применим такой срок службы. Это касается допустимого объема передаваемых данных в сутки, количества устройств в сети и является ли устройство маршрутизатором.

15. Защита данных. Что нужно знать пользователю о защите данных в сетях передачи?

Обычно обеспечивается защита данных на радио канале и идентификация пользователя для пользовательских приложений. Защита данных на уровне радиоканала — осуществляется на базе скремблирования данных, перемежения, скачков по частоте. Криптографическая защита данных применяется при достаточной обоснованности (см. SP100 wireless standard).

16. Надежность.

На надежность сети влияет много факторов, такие как расстояния, тип питания, топология, протокол, уровень сигнала, интерференция, посторонние сигналы и помехи. Лучший способ определения надежности продукта - установка пилотного проекта.

Сети D-Mesh адаптируются к условиям окружения и обеспечивают большую надежность, чем проводные системы связи, за счет коммуникационной избыточности.

Первое требование надежности – использование протокола со скачками частоты для предотвращения замираний и избежание узкополосных помех в рабочем диапазоне. Второе требование надежности – использование протоколов самоорганизующихся сетей. Только это может гарантировать работоспособность сети при постоянно меняющихся внешних условиях. Третье требование надежности - устройства должны иметь функцию самодиагностики и передавать флаги аварий в случае аварийных ситуаций.

17. Инфраструктура. Каким образом данные сети попадают в существующую структуру потребителя?

Координатор сети является связующим звеном между радиоканалом сенсорных сетей и IP сетью. При этом протокол радио сети туннелируется через IP сеть. Пользовательские приложения преобразуют получаемые данные в удобный формат для визуализации и экспорта в другие приложения или базы данных.

18. Аппаратная платформа.

Общие аппаратные платформы только вырабатываются. Так например, радиомодули ZegBee разных производителей не гарантируют совместимости в одной сети. При выборе поставщика сенсорных сетей нужно обратить внимание на расширяемость и масштабируемость данной платформы.

Устройства сети D-Mesh имеют возможность обновления программного обеспечения как локально, так и по радиоканалу для удовлетворения постоянно растущим требованиям заказчиков, а также для совместимости с последующими версиями.

19. Интеллект сенсоров.

Контролеры сети D-Mesh на месте производят ряд вычислений и принимают решение о достоверности поступаемой информации, а также производят диагностику работоспособности отдельных узлов. Это позволяет значительно сократить требования к пропускной способности сети, увеличить масштабируемость и срок эксплуатации системы.

20. Стандарты. Проблема в существовании множества технологий и протоколов (по материалам 1* и 2*).

На сегодня ZigBee является единственным установившимся стандартом в области беспроводных сетей. В тоже время по мнению эксперта компании Sensicast – протоколы на основе ZegBee стандарта создают большой объем данных маршрутизации, что ухудшает пропускную способность сети и резко уменьшает срок службы батарей.

В июне 2007 г. была утверждена 7 версия стандарта HART, в котором одним из наиболее значимых нововведений является спецификация WirelessHART, добавляющая беспроводную передачу данных в HART-системы. Аналогичный стандарт ISA SP100.11а находится еще в процессе разработки.

После принятия стандартов должен пройти длительный срок, прежде чем появятся соответствующие им готовые продукты и будет накоплен практический опыт их применения. Конечно, использование стандартизованных технологий имеет множество известных преимуществ, главное из которых - обеспечение совместимости и взаимозаменяемости изделий от различных производителей. Если же не предполагается создание сети из устройств от разных производителей и/или требуется закрытость системы для обеспечения безопасности, то специализированная платформа может быть предпочтиельнее. Более того, иногда невозможно создать систему, отвечающую специфическим требованиям приложения на основе стандартов, в то время как некоторая специализированная технология позволяет это сделать. Очевидно, что не существует решений оптимальных для всех задач, поэтому при выборе между стандартизованными и специализированная решениями следует в первую очередь оценивать степень соответствия технических возможностей продуктов поставленной задаче.

Сравнительные характеристики беспроводных сетей передачи данных D-Mesh.

Параметры	Заполните сами	D-Mesh
Топология сети		Звезда, Кластерное дерево
Число устройств поддерживаемых сетью		До 1500 (из них 240 с функцией маршрутизации)
Данные на сетевой узел/сутки (батарейное питание)		До 1500 пакетов
Рабочий диапазон частот		433МНz (315, 868, 915, 2400 МНz по запросу)
Мощность излучения		< 10 mBT
Физическая скорость передачи данных		25 – 250 кБод
Достоверность передачи данных		CRC16 + соответствие форматам данных
Помехозащищенность данных		Frequency hopping
Вид передачи / Модуляция		Двухсторонняя связь / GFSK
Число уровней ретрансляции		До 30
Параметры входных импульсов		f макс. <= 1Гц, t имп. >= 500мс
Дальность: - внутри зданий - на открытой местности		20 - 40 м 200 - 400 м
Диаметр покрываемой зоны при среднем расстоянии ~70м		до 4200 метров
Данные с метками времени		Да
Высокая технологичность развертывания/эксплуатации		Да
Необходимость конфигурирования устройств/сети		Нет
Возможность установки/снятия устройств		Да
Работа сети при изменении внешних факторов		Да
Работа с ручным терминалом		Да
Работоспособность при перекрытии сетей		Да (до 16 сетей)
Автоматическая маршрутизация		Да
Затраты на одну точку сети		12 - 39 Евро (зависит от объема заказа)
Размеры радиомодуля в корпусе		68 x 55 x 32 мм
Источник питания / Срок службы (min)		Литиевая батарея 2 А*ч / 6 лет
Хранение данных при отсутствии питания		10 лет
Размер буфера данных		60 дней
Степень защиты корпуса		IP51
Диапазон рабочих температур радиомодуля		от -20° C до + 60° C
Гарантийный срок		24 месяца
Соответствие стандартам		Сертификат Республики Молдова

Для сравнения с возможностями других беспроводных сенсорных сетей предлагаем ознакомиться со следующими публикациями:

- 1* http://www.specialtypub.com/pdfs/M2M_20questions.pdf
 2* <u>Беспроводные сенсорные сети: вопросы и ответы</u>